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ABSTRACT 

We prove that the projection and Macphaii constants of l~ (1 <-- p --<__ 2) are 
asymptotically equivalent to n 112 and n- 1/2 respectively. We also obtain some 
relations linking certain parameters of general finite dimensional real Banach 
spaces. 

Preliminaries and definitions. Let 1~ (1 =< p < oo) be the space of real n-tuples 
x = (x~, x2 , ' " ,  x,) with the norm [] x p = ( ~ = 1  x, [P)~/P, and let l~ be the same 

space with the norm 11 x II -- sup { xi ; 1 < i < n}. 
If  X, Y are two isomorphic Banach spaces, we denote the "distance coefficient" 

between them by d(X, Y) = infll TII II r- ll, where the infimum is taken over 
all the bounded linear one-to-one transformations T from X onto Y. 

The "projection constant" of  X, denoted by 2(X), is defined to be the in- 
fimum of  the numbers 2 such that for every Banach space Y containing X as a 
subspace, there exists a linear projection P from Yonto X with norm not exceeding 
2 (if there is no such 2, we write 2(X) = ~ ) .  

The "Macphai l  constant"  of the space X, denoted by p(X), is defined as inf 

{(sup II ~,i ~sai II)/~'~=111 ai[I}, where the supremum is taken over all subsets J 
of  {1, 2,--., m}, and the infimum is taken over all finite sets {ai e X;  ~7'=11ta,II > 

I f  f ,  g are two positive functions defined on the integers, we write f (n)  ,,, g(n) 
if  infn(.[(n)/g(n))> 0 and sup,(f(n)/g(n))< ~ .  All the spaces considered here 
will be assumed to be real Banach spaces. 

We summarise first the known results concerning the constants which were 

defined above for I~ spaces: 

(i) If  1 < p < q < oo and (p - 2) (q - 2) >__ O, then d(F., lg.) = n ' /P - i / q ,  [4]. 
(ii) If  l < p < ~ < q < ~ ,  then d(lP.,lq.)~max{nl/p-1/2, nl/2-1/q}, [4]. 

(iii) If  2 < p < oo, then 2(I. p) ~ n#(F.).., n l/p, [8]. 

(iv) If  1 < p < 2, then 2(/. p) _<_ (1 + .v/2) x/n, [4]. 
(v) 2(/.1) ~ v/n (the exact value was calculated in [3]). 

Received March 22, 1968 and in revised form May 19, 1968. 
* This note is a part of the author's Ph.D. Thesis prepared at the Hebrew University of 

Jerusalem, under the supervision of Prof. J. Lindenstrauss, to whom the author wishes to express 
his thanks and appreciation. 

295 



296 YEHORAM GORDON Israel J. Math., 

(vi) 2(/. z) ~ x/n (in [3] an upper bound was found for 2(l.Z), and this bound 
was later shown to be exact in [8]). 

We prove here that 2(I. p) ~ x/n for 1 < p < 2. This solves a problem raised in 
[5] and [8]. 

THEOREM 1. I f  1 ~_ p < 2 then 

(I) 2(ID ~ n#(ID ~ ~/-n. 
In the proof of Theorem I we shall use the following result which is of interest 

in itself. 

THEOREM 2. Let X be an n-dimensional Banach space, then 

(2) 2n#(X) < 2(X). 

Proof. In view of the continuity of 2(X) and v(X) as a function of X (i.e. 
if d(X,,, X) ~ 1 then 2(Xm) ~ 2(X), #(X,)  ~/~(X)), it is enough to prove (2) for a 
polyhedral space Z (i.e. a Minkowsky space whose unit ball is a polytope). It is 
well known and easily seen that every polyhedral space is isometrically embeddable 
in a suitable l~, and thus we may assume that Z _ l~. It is also well known that 
2(Z) = mini] P II, where P ranges over all the linear projections from 12 onto Z. 

Let P be any projection from l~ onto Z such that IIPII =~(z) .  Let 

ei=(0,. .~_O,1,0,. . . ,0) ( l _ < i < m )  be the natural basis of l~, and put 
i 

e,,+~ = - e,(1 _< i _< m). 
Obviously for every subset d _ {1, 2,..., 2m} 

(3) II ]~ Pe, II --< II P II = 

On the other hand, if Pei ~o = 1 i,jej, then trace P = ~i= a ~,t n (VI.9.28, 
[1]), and thus 

2m 

(4) ]~ IIPe,[[=2 %:11t>=2 Y, 
t = 1  1 = I  j = l  i = 1  

By combining (3) and (4) we get 

2m 

=< sup, 11 ,.,Z Pet [l/ i-~, II Pe'll 2(Z)/2n. 

REMARK. Equation (2) cannot be improved in general since 2(/~) = 2n #(I~) = 1 
[8]. 

We shall need also the following technical lemma whose proof is very similar 
to that of  Theorem 1 (ii) of  [8]. We use the following notations: Let X be an 
n-dimensional Banach space. We denote by II I1~ and 11 Ilx' the norms in X and 
X* respectively. We fix in X a coordinate system. The Euclidean norm with 
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respect to these coordinates (in X and X*) will be denoted by ~ 2. By a.  and co. 
we denote the surface area and volume respectively of B . =  ix;  x[I 2 < 1}, and 
by de. the element of area on S . =  ix;  llxl[2 = 1}. 

LEMMA 1. Let X be an n-dimensional Banach space, then 

(5) . (g ) .  fs II Y II x*dtr." sup II Y II x a ~o._,, 
. I lyl l2=l  

Proof. Let A = {al,a2,...,am} be any finite subset of X, and let 
B = { ~ '=t2,a , ;  12,[ < 1, 1 < i <  m}. Clearly B is a polytope in X, all whose 

m a = extreme points are of the form 22,= te~ , with e, + 1. Hence 

(6) y = max {llxllx; x~n} = max II ~ e,a, I!x 
et  = -I- 1 / = 1  

< 2 max 11 22 a, I[x, 
J i E J  

where J ranges over the subsets of {1, 2, . . . ,  m}. Clearly 

= sup {[(x,y)l/llYll~,;x~,yeS.} 

= m a Hence for every yeS, ,  ellyllx.> 22,=,1( ,,Y)]" By integrating over the 
unit sphere S,, we get 

)' fs HY Ilx.da, > ~, fs I(ai'y)ldtr" = ~ 2mn-lllatl]2 
n i = 1  n i = 1  

> 2°9"-1 ~ II a, IIx / sup Ilx IIx, 
i = 1 t I lx l l2  = 1 

and thus by (6), 

sup I]x Ilx" fs IIY II x ,dan" ( s u p  I[ ~ ai [ I x / ~  II a, Ilx) > co n_,. 
Ilxf12 = 1 . J t e J i = 

Since A was arbitrary the proof  is concluded. 
We may now prove Theorem 1 for the case 1 < p < 2. We shall see later that  

(1) is an immediate consequence of (13), however the following proof  is simpler 
and more direct. 

P r o o f  o f  T h e o r e m  1 for 1 < p ___ 2: Applying Theorem 2 and Result (iv) we 
obtain 

(7) 2 ,~q~ =< ~(t. ~) =< (1 + ,/~) V~. 
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We use (5) in order to find a lower bound for/~(l~). We need thus an estimate for 
aZ '  fs.][ x ][,da., where q = p/ (p  - 1). By Hi$1der's inequality 

< '"' (n~:' pd~.)". 

The points of Sn may be defined by spherical coordinates x t = sin01, x2 = 
sin02 cos0t, ..-, x,_ x -- sin0,_ 1 cos0,-2 "" cos01, x, = cos0,_ 1 cos0,-2 "" cos01, 
where - lr < 0,_ 1 < rr, - 7r/2 < Ok < re/2 (1 < k < n - 2), and 

dtr, = cos'-201cos'- a02 ... cos O,_2dO 1 ... dO,_ 1. 

Then continuing (8) and substituting t = cos201, we have 

(9) na:, fs [xi] ~da, 2 n t r , - l t r :  1 fn /2  = sinq01cos "- eOldO 1 
n , d O  

= n ~ , _ ~ 2  ~ t('-3)/2(! _ t)(~-l)/2dt 

q + l  n + q  

Since 

and nan_ ltr ~ ' .., n '12, it follows that ntr~ l f s.i x l  I~d~, ~ n' - %  and hence by (8) 

(,0) I. II x l IAr.  --< c , , ' ~ - " ,  where c, = c,(p) > O. 
n 

Also sup I l x l l , = n ' / , - ' - a n d  t o , _ l / a , ~ n  - l /z ,  and this together with 
Ilxll 2 = 1 

(10) when applied to (5) yields the required inequality Ix(l~ >= cn - i / z ,  where 

c = c(p) > 0 is a constant. 

Rl~matK. In the case of 12, Theorem 2 and Result (v) give us 

2nlx(/~ l) < 2(/~ l) ,., nil 2. 

The use of (5) however requires the estimation of a~ -1 f s:llxll~d,:. By using 
similar methods to those employed in the proof of Theorem 3(B) [2], we find that 
" : '  S:.ll xll~ d', ~ x / l °gn/n .  Consequently ll(ll~) >= c / x /n  log n, where c > 0 is 
a constant. However, this is not the best possible asymptotic estimate for 
#(l~), and Corollary 1 will yield the sharper result stated in (1). 

TrmoItEM 3. Let X and Y be n-dimensional Banach spaces, then 

(i)l/t(X) __< I t ( r )d (X ,  Y): 
(ii) p(X*) ~ 2p(X)d(X,l~). 
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Proof. (i) Let T: Y - ,  X be a linear transformation such that J[ Ty[J <= Ilyli 
for every y e  Y, and II r - 1  ]1 = d(X, Y). Then the result follows directly from the 
definition of/~ and the inequality il Ty II ~ II y II =< d(X, Y)ll Yy II for every y ~ Y. 

(ii) We retain the notations of Lemma 1, and choose a coordinate system in X, 
so that K c_ B, ~_ d(X,/2)K, where K is the unit ball of  X. Let 

It is easily verified that F is a convex subset of  C(K) (the Banach space of  contin- 
uous functions on K) which is disjoint from the set G = { f e  C(K); supxerf(x ) < 1}. 

Since'~ G is a convex open set which contains the open unit ball of  C(K) 
and the negative functions in C(K), it follows from the separation theorems and 
the Riesz representation theorem, that there exists a probability measure v on K 
such that ffdv=>l for every f ~ F .  For any 0 ~ x * e X * ,  the function 
/ - -  I x*l/.(x*) II x* II belongs to F, hence 

~(x*)ll x*lI = f Ix*(x)ldv(x). (11) 

Integrating (11) over S, we get 

( 1 2 )  ~ f (fx, esnlX*(X) ldqn)dY(x)=2fDn_l f i]xH2dY(x) 

<= 2to,_ 1 f l dr(x) = 23~,_ 1, 

and thus by (5) and (12) /~(X*)_-< 2/~(X)d(X,12). 

THEOREM 4. Let X be an n-dimensional Banach space, then 

(13) p(X)d(X, ¢)d(X, 1~) > 1/2K~, 

where KG is the universal Grothendieck constant 

Proof. The proof  is essentially contained in Theorem 4.1 [7], however for the 
sake of completeness we rephrase it to fit our definitions. We shall use the following 
result due to Grothendieck (see e.g. Theorem 2.1 [7]): 

Let {a~.j}~.j = 1,2,...,,~ be a real valued matrix, and let M be a positive number 
m ~ m S m such that ] ~,~,i=la~jhsj] < M  for every real {It}l= 1 and { j~j=l satisfying 
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= = x m y m in a real It, I < 1 and Is~l < 1 When for arbitrary vectors { i},=1 and { j}~=x 
inner product space H 

D; 

(14) I ~ a,~(x,,y~) <:KoM ~uPll~,ll supllyll I 
J r = l ,  1 i j 

x m m In particular, if for a given set { i}~=1 we choose the set {Yj}j=I such that 
IIyJH = 1 and (~=la~,jxi,  y j )=  I[ ~'i%laidxiH , we obtain from (14) 

(15) £ II ~, ~,,,x,II <-- KoM sup I1~,11 
j = l  i = 1  t 

We turn to the proof of  Theorem 4. There exists a transformation S: 12 ~ X 
such that [I S[I = 1 and II S - i  II-- d(X,12). Let {x~}~=l ~ X be an arbitrary set, 
put Yi = S - i x  v Let {e j}3 =1 and {fj}3 =1 be the natural bases in / 1 and (12)* -- 1~ 

s " t m respectively, and let y~ = ~,]=laidej. Let { j}jffil, { i}i=l be any real numbers 
with absolute values ~ 1, and put y * =  v~.=tsjf.r Then 

(16) 1~. a,,J',s~ I <= I',1 ai,jsj 
l,y i=1 j 

< asdsi = Y*(Yt) 
1 = 1  j 1 i = l  

< sup II ~ ~,Y, II 
el=±1 i = 1  

IIs-lll sup II ~ ~,x, II" 
e~=+l  / = 1  

There exists a transformation T: X ~ 1: such that II T-111 = 1 and II T II 
= d(X, I~). Then using (15) we obtain 

(17) ~ IIx, II z ~ llTx, II = ~: IITSY, II = ~: 11 ~ a,aZSe~ll 
I = I  I = I  1=I i = l  j = l  

m 

-<- goll s-'ll sup I ~1 ~,x, ! II Z II II S II 
el=+1 i 

<= 2K~a(x, t2)a(x,t~) sup ~ ~£ ~, II, 
,/ | e . /  

where J denotes a subset of  {I, 2, ..., m}, and this proves inequality (13). 

COROLLARY 1. For 1 = < p = < 2, 

(1 + ~/2) ~/~ > ;t(l~ > 2n#(l~) ~ ~/n [K~. 

Proof. The upper bound is Result (iv). For the lower bound, take X = I~ in 
Theorem 4 and use Result (i) and Theorem 2. 



(19) 

Consequently 

(20) 
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Corollary 1 proves Theorem 1. It follows also that (13) is asymptotically exact 
for every l~ (1 __< p =< oo). 

COROLLARY 2. Let X be an n-dimensional subspace of l 1, then 

Proof. Let T: X -~l~ be a transformation for which U T[[ II T-l[[ = d(X,12) 
and let P be a projection of P on X. Now, TP: P ~ l~, and as in the proof 

x ra l 1 of Theorem 4, we have for any subset { i}~= l m 

(18) tl TPx,It <= K~ll Tell sup 11 ~ e,x, II 
i = 1  e l = ~ l  i = 1  

(this is essentially a result of Theorem 4.1, [7]). Taking in particular xie X in 
(I8), we get 

II II =< z lIT-111 [ITx, ll= K d(X,Z )IIPI[ sup [I ~ e,x,[I 
i = 1  i = 1  e ~ = + l  i = 1  

< 2KGd(X,I. 2) [IPI} supll E xi 11, 
J i e J  

where J ranges over the subsets of {1, 2, ..., m}. By the definition of p(X) 

II e It d(X, ) 1/2Ko. 

P(X)2(X)d(X,I 2. ) > 1/2K 6. 

Applying (2) and the inequality d(X, 12) < fin [6] in (20), we obtain the 
required result. 

COROLLARY 3. Let X be an n-dimensional Banach space, then 

(21) 2(X)A(X*) >= K~ 2/381/3. 

Proof. Due to the continuity of ,I(X), we may assume, as in the proof of 
Theorem 2, that X is a subspace of a suitable l~. Let P: l~-~ X be a projection 
such that 2(X)= liP[l, and let I : X - ~ l ~  be the identity on X. Then P*I* is a 
projection of ( l~* = l~ onto P 'X*,  and it follows from (19) that 

(22) ~(P*X*) [[ P*I* [[ d(P*X*,I 2) > 1/2K~. 

But by Theorem 3(i), 

p(P*X*) < p,(X*)d(P*X*, X*) </~(X*) I[ P ]] < 2(X*)2(X)/2n, 

and since d(P*X*,l 2) <= fin and l[ P*I* [[ =< 1[ P U = 2(x), we obtain from (22): 
2(X*)(2(X)) 2 _>- ff'n ]Ka. 
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Similarly, 2(X)(2(X*))2-__ x/n/K~, and (21) follows by multiplying both 
inequalities. 

REMARK. An upper bound for ;t(X)2(X*) may be found in [5], where it was 
shown that d(X, l~)d(X, ll.) <= n if X is a real n-dimensional symmetric Banach 
space. The corresponding inequality for a non-symmetric space involves the 
asymmetry constants of the space. Since 2 (X)<  d(X, l~)= d(X*, 1. ~) if X is 
n-dimensional, it follows that if X is symmetric as well, then 

~(X)2(X*) <= d(X, tT)d(X, ll.) <= n. 
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