ON THE PROJECTION AND MACPHAIL CONSTANTS OF i~ SPACES

BY

YEHORAM GORDON*

ABSTRACT

We prove that the projection and Macphail constants of l_n^p ($1 \leq p \leq 2$) are asymptotically equivalent to $n^{1/2}$ and $n^{-1/2}$ respectively. We also obtain some relations linking certain parameters of general finite dimensional real Banach spaces.

Preliminaries and definitions. Let l_n^p ($1 \leq p < \infty$) be the space of real *n*-tuples $x = (x_1, x_2, \dots, x_n)$ with the norm $||x||_p = (\sum_{i=1}^n |x_i|^p)^{1/p}$, and let l_n^{∞} be the same space with the norm $||x||_{\infty} = \sup \{ |x_i|; 1 \le i \le n \}.$

If X , Y are two isomorphic Banach spaces, we denote the "distance coefficient" between them by $d(X, Y) = \inf ||T|| ||T^{-1}||$, where the infimum is taken over all the bounded linear one-to-one transformations T from X onto Y.

The "projection constant" of X, denoted by $\lambda(X)$, is defined to be the infimum of the numbers λ such that for every Banach space Y containing X as a subspace, there exists a linear projection P from Y onto X with norm not exceeding λ (if there is no such λ , we write $\lambda(X) = \infty$).

The "Macphail constant" of the space X, denoted by $\mu(X)$, is defined as inf $\{(\sup \|\sum_{i \in J} a_i\|) / \sum_{i=1}^m \|a_i\|\}$, where the supremum is taken over all subsets J of $\{1, 2, \dots, m\}$, and the infimum is taken over all finite sets $\{a_i \in X; \sum_{i=1}^m ||a_i|| > 0\}$.

If f, g are two positive functions defined on the integers, we write $f(n) \sim g(n)$ if $\inf_n(f(n)/g(n)) > 0$ and $\sup_n(f(n)/g(n)) < \infty$. All the spaces considered here will be assumed to be real Banach spaces.

We summarise first the known results concerning the constants which were defined above for l_n^p spaces:

(i) If
$$
1 \le p \le q \le \infty
$$
 and $(p-2)(q-2) \ge 0$, then $d(l_n^p, l_n^q) = n^{1/p-1/q}$, [4].

(ii) If $1 \leq p \leq 2 \leq q \leq \infty$, then $d(l_n^p, l_n^q) \sim \max{\{n^{1/p-1/2}, n^{1/2-1/q}\}}$, [4].

(iii) If $2 \le p \le \infty$, then $\lambda(l_n^p) \sim n \mu(l_n^p) \sim n^{1/p}$, [8].

- (iv) If $1 \leq p \leq 2$, then $\lambda(l_n^p) \leq (1 + \sqrt{2}) \sqrt{n}$, [4].
- (v) $\lambda(l_n^1) \sim \sqrt{n}$ (the exact value was calculated in [3]).

Received March 22, 1968 and in revised form May 19, 1968.

^{*} This note is a part of the author's Ph.D. Thesis prepared at the Hebrew University of Jerusalem, under the supervision of Prof. J. Lindenstrauss, to whom the author wishes to express **his** thanks and appreciation.

(vi) $\lambda(l_n^2) \sim \sqrt{n}$ (in [3] an upper bound was found for $\lambda(l_n^2)$, and this bound was later shown to be exact in $[8]$).

We prove here that $\lambda(l_n^p) \sim \sqrt{n}$ for $1 \leq p \leq 2$. This solves a problem raised in [5] and [8].

THEOREM 1. If $1 \leq p \leq 2$ then

(1)
$$
\lambda(l_n^p) \sim n\mu(l_n^p) \sim \sqrt{n}.
$$

In the proof of Theorem I we shall use the following result which is of interest in itself.

THEOREM 2. *Let X be an n-dimensional Banach space, then*

$$
(2) \t 2n\mu(X) \leq \lambda(X).
$$

Proof. In view of the continuity of $\lambda(X)$ and $\mu(X)$ as a function of X (i.e. if $d(X_m, X) \to 1$ then $\lambda(X_m) \to \lambda(X), \mu(X_m) \to \mu(X)$, it is enough to prove (2) for a polyhedral space Z (i.e. a Minkowsky space whose unit ball is a polytope). It is well known and easily seen that every polyhedral space is isometrically embeddable in a suitable l_m^{∞} , and thus we may assume that $Z \subseteq l_m^{\infty}$. It is also well known that $\lambda(Z) = \min ||P||$, where P ranges over all the linear projections from l_m^{∞} onto Z.

Let P be any projection from l_m^{∞} onto Z such that $||P|| = \lambda(Z)$. Let $e_i=(0,\dots,0,1,0,\dots,0)$ $(1\leq i\leq m)$ be the natural basis of l_m^{∞} , and put $e_{m+i} = -e_i (1 \leq i \leq m).$

Obviously for every subset $J \subseteq \{1, 2, \dots, 2m\}$

(3)
$$
\|\sum_{i \in J} Pe_i\| \leq \|P\| = \lambda(Z).
$$

On the other hand, if $Pe_i = \sum_{i=1}^m \alpha_{i,j} e_i$, then trace $P = \sum_{i=1}^m \alpha_{i,i} = n$ (VI.9.28, [1]), and thus

(4)
$$
\sum_{i=1}^{2m} \|Pe_i\| = 2 \sum_{i=1}^{m} \|\sum_{j=1}^{m} \alpha_{i,j} e_j\| \geq 2 \sum_{i=1}^{m} |\alpha_{i,i}| \geq 2n.
$$

By combining (3) and (4) we get

$$
\mu(Z) \leq \sup_{J} \parallel \sum_{i \in J} Pe_i \parallel \Big/ \sum_{i=1}^{2m} \parallel Pe_i \parallel \leq \lambda(Z)/2n.
$$

REMARK. Equation (2) cannot be improved in general since $\lambda(l_n^{\infty}) = 2n \mu(l_n^{\infty}) = 1$ **[8].**

We shall need also the following technical lemma whose proof is very similar to that of Theorem 1 (ii) of $\lceil 8 \rceil$. We use the following notations: Let X be an *n*-dimensional Banach space. We denote by $\|\cdot\|_X$ and $\|\cdot\|_X$, the norms in X and X^* respectively. We fix in X a coordinate system. The Euclidean norm with

respect to these coordinates (in X and X*) will be denoted by $\|\cdot\|_2$. By σ_n and ω_n we denote the surface area and volume respectively of $B_n = \{x: ||x||_2 \le 1\}$, and by $d\sigma_n$ the element of area on $S_n = \{x; ||x||_2 = 1\}.$

LEMMA 1. Let X be an n-dimensional Banach space, then

(5)
$$
\mu(X) \cdot \int_{S_n} ||y||_{X^*} d\sigma_n \cdot \sup_{||y||_2 = 1} ||y||_{X} \ge \omega_{n-1}.
$$

Proof. Let $A = \{a_1, a_2, \dots, a_m\}$ be any finite subset of X, and let $B = \left\{ \sum_{i=1}^m \lambda_i a_i; \left| \lambda_i \right| \leq 1, 1 \leq i \leq m \right\}.$ Clearly B is a polytope in X, all whose extreme points are of the form $\sum_{i=1}^{m} \varepsilon_i a_i$ with $\varepsilon_i = \pm 1$. Hence

(6)
$$
\gamma = \max \{ \|x\|_X; x \in B \} = \max_{\varepsilon_i = \pm 1} \|\sum_{i=1}^m \varepsilon_i a_i \|_X
$$

$$
\leq 2 \max_{J} \|\sum_{i \in J} a_i \|_X,
$$

where J ranges over the subsets of $\{1, 2, \dots, m\}$. Clearly

$$
\gamma = \sup \{ |(x, y)| / || y ||_{x^*}; x \in B, y \in S_n \}
$$

=
$$
\sup \{ \sum_{i=1}^m |(a_i, y)| / || y ||_{x^*}; y \in S_n \}.
$$

Hence for every $y \in S_n$, $\gamma \| y \|_{X^*} \geq \sum_{i=1}^m |(a_i, y)|$. By integrating over the unit sphere S_n , we get

$$
\gamma \int_{S_n} \|y\|_{X^*} d\sigma_n \geq \sum_{i=1}^m \int_{S_n} |(a_i, y)| d\sigma_n = \sum_{i=1}^m 2 \omega_{n-1} \|a_i\|_2
$$

$$
\geq 2\omega_{n-1} \sum_{i=1}^m \|a_i\|_X \int \sup_{\|x\|_2 = 1} \|x\|_X,
$$

and thus by (6) ,

$$
\sup_{\|x\|_2=1} \|x\|_X \cdot \int_{S_n} \|y\|_X d\sigma_n \cdot \left(\sup_J \| \sum_{i \in J} a_i \|_X \right) \cdot \sum_{i=1}^m \|a_i\|_X \right) \geq \omega_{n-1}.
$$

Since A was arbitrary the proof is concluded.

We may now prove Theorem 1 for the case $1 < p \le 2$. We shall see later that (1) is an immediate consequence of (13) , however the following proof is simpler and more direct.

Proof of Theorem 1 for $1 < p \le 2$ **:** Applying Theorem 2 and Result (iv) we obtain

(7)
$$
2n\mu(l_n^p) \leq \lambda(l_n^p) \leq (1 + \sqrt{2})\sqrt{n}.
$$

We use (5) in order to find a lower bound for $\mu(l_n^p)$. We need thus an estimate for $\sigma_n^{-1} \int_{S_n} ||x||_q d\sigma_n$, where $q = p/(p-1)$. By Hölder's inequality

$$
(8) \qquad \sigma_n^{-1} \int_{S_n} \|x\|_q d\sigma_n \leq \left(\sigma_n^{-1} \int_{S_n} \|x\|_q^q d\sigma_n\right)^{1/q} = \left(n\sigma_n^{-1} \int_{S_n} |x_1|^q d\sigma_n\right)^{1/q}.
$$

The points of S_n may be defined by spherical coordinates $x_1 = \sin \theta_1$, $x_2 =$ $\sin\theta_2 \cos\theta_1, \cdots, x_{n-1} = \sin\theta_{n-1} \cos\theta_{n-2} \cdots \cos\theta_1, x_n = \cos\theta_{n-1} \cos\theta_{n-2} \cdots \cos\theta_1,$ where $-\pi \leq \theta_{n-1} \leq \pi$, $-\pi/2 \leq \theta_k \leq \pi/2$ ($1 \leq k \leq n-2$), and

 $d\sigma_n = \cos^{n-2}\theta_1 \cos^{n-3}\theta_2 \cdots \cos\theta_{n-2} d\theta_1 \cdots d\theta_{n-1}$

Then continuing (8) and substituting $t = \cos^2 \theta_1$, we have

(9)
$$
n\sigma_n^{-1} \int_{S_n} |x_1|^q d\sigma_n = 2n\sigma_{n-1}\sigma_n^{-1} \int_0^{\pi/2} \sin^q \theta_1 \cos^{n-2} \theta_1 d\theta_1
$$

$$
= n\sigma_{n-1}\sigma_n^{-1} \int_0^1 t^{(n-3)/2} (1-t)^{(q-1)/2} dt
$$

$$
= n\sigma_{n-1}\sigma_n^{-1} \Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{q+1}{2}\right) \Gamma\left(\frac{n+q}{2}\right)
$$
Since
$$
\Gamma\left(\frac{n-1}{2}\right) \Gamma\left(\frac{q+1}{2}\right) = \frac{q(2-1)/2}{2}
$$

$$
\Gamma\left(\frac{n-1}{2}\right)\Gamma\left(\frac{q+1}{2}\right)\left/\Gamma\left(\frac{n+q}{2}\right)\sim n^{-q/2-1/2}.
$$

and $n\sigma_{n-1}\sigma_n^{-1} \sim n^{\delta/2}$, it follows that $n\sigma_n^{-1} \int_{S_n} |x_1|^q d\sigma_n \sim n^{1-q/2}$, and hence by (8)

(10)
$$
\sigma_n^{-1} \int_{S_n} ||x||_q d\sigma_n \leq c_1 n^{1/q-1/2}, \text{ where } c_1 = c_1(p) > 0.
$$

Also sup $||x||_p = n^{1/p-1/2}$ and $\omega_{n-1}/\sigma_n \sim n^{-1/2}$, and this together with (10) when applied to (5) yields the required inequality $\mu(I_n^p) \geq cn^{-1/2}$, where $c = c(p) > 0$ is a constant.

REMARK. In the case of l_n^1 , Theorem 2 and Result (v) give us

$$
2n\mu(l_n^1) \leq \lambda(l_n^1) \sim n^{1/2}
$$

The use of (5) however requires the estimation of $\sigma_n^{-1} \int_{S_n} ||x||_{\infty} d\sigma_n$. By using similar methods to those employed in the proof of Theorem $3(B)$ [2], we find that σ_n^{-1} $\int_{S_n} ||x||_{\infty} d\sigma_n \sim \sqrt{\log n/n}$. Consequently $\mu(\ell_n^1) \ge c/\sqrt{n \log n}$, where $c > 0$ is a constant. However, this is not the best possible asymptotic estimate for $\mu(l_n^1)$, and Corollary 1 will yield the sharper result stated in (1).

THEOREM 3. Let X and Y be n-dimensional Banach spaces, then

(i) $\mu(X) \leq \mu(Y) d(X, Y)$ (ii) $\mu(X^*) \leq 2\mu(X)d(X,l_n^2)$.

Vol. 6, 1968 ON THE PROJECTION AND MACPHAIL CONSTANTS OF l_n^p SPACES 299

Proof. (i) Let $T: Y \to X$ be a linear transformation such that $||Ty|| \le ||y||$ for every $y \in Y$, and $||T^{-1}|| = d(X, Y)$. Then the result follows directly from the definition of μ and the inequality $||Ty|| \le ||y|| \le d(X, Y)||Ty||$ for every $y \in Y$.

(ii) We retain the notations of Lemma 1, and choose a coordinate system in X , so that $K \subseteq B_n \subseteq d(X, l_n^2)K$, where K is the unit ball of X. Let

$$
F = \Big\{ (\mu(X^*))^{-1} \sum_{i=1}^m |x_i^*|; \sum_{i=1}^m ||x_i^*|| = 1 \Big\}.
$$

It is easily verified that F is a convex subset of $C(K)$ (the Banach space of continuous functions on K) which is disjoint from the set $G = \{f \in C(K); \sup_{x \in K} f(x) < 1\}.$

Since' G is a convex open set which contains the open unit ball of $C(K)$ and the negative functions in $C(K)$, it follows from the separation theorems and the Riesz representation theorem, that there exists a probability measure ν on K such that $\int f dv \ge 1$ for every $f \in F$. For any $0 \ne x^* \in X^*$, the function $f = |x^*|/\mu(X^*)$ x^* belongs to F, hence

(11)
$$
\mu(X^*) \| x^* \| \leq \int |x^*(x)| dv(x).
$$

Integrating (11) over S_n we get

$$
\mu(X^*) \int_{x^* \in S_n} \|x^*\| d\sigma_n \le \int_{x^* \in S_n} \left(\int |x^*(x)| d\nu(x) \right) d\sigma_n
$$

(12)

$$
= \int \left(\int_{x^* \in S_n} |x^*(x)| d\sigma_n \right) d\nu(x) = 2\omega_{n-1} \int \|x\|_2 d\nu(x)
$$

$$
\le 2\omega_{n-1} \int 1 d\nu(x) = 2\omega_{n-1},
$$

and thus by (5) and (12) $\mu(X^*) \leq 2\mu(X)d(X, l_n^2)$.

THEOREM 4. *Let X be an n-dimensional Banach space, then*

(13)
$$
\mu(X)d(X, l_n^2)d(X, l_n^1) \geq 1/2K_G,
$$

where KG is the universal Grothendieck constant

$$
\left(\frac{\pi}{2}\leq K_G\leq \sinh\frac{\pi}{2}\right).
$$

Proof. The proof is essentially contained in Theorem 4.1 [7], however for the sake of completeness we rephrase it to fit our definitions. We shall use the following result due to Grothendieck (see e.g. Theorem 2.1 [7]):

Let $\{a_{i,j}\}_{i,j=1,2,\dots,m}$ be a real valued matrix, and let M be a positive number such that $\left| \sum_{i,j=1}^m a_{i,j}t_is_j \right| \leq M$ for every real $\{t_i\}_{i=1}^m$ and $\{s_j\}_{j=1}^m$ satisfying

 $|t_i| \leq 1$ and $|s_j| \leq 1$. Then for arbitrary vectors $\{x_i\}_{i=1}^m$ and $\{y_i\}_{i=1}^m$ in a real inner product space H

(14)
$$
\left| \sum_{i,j=1}^m a_{ij}(x_i, y_j) \right| \leq K_G M \sup_i \|x_i\| \sup_j \|y_j\|.
$$

In particular, if for a given set $\{x_i\}_{i=1}^m$ we choose the set $\{y_i\}_{i=1}^m$ such that $||y_j|| = 1$ and $(\sum_{i=1}^m a_{i,j}x_i, y_j) = ||\sum_{i=1}^m a_{i,j}x_i||$, we obtain from (14)

(15)
$$
\sum_{j=1}^{m} \|\sum_{i=1}^{m} a_{i,j}x_{i}\| \leq K_{G}M \sup_{i} \|x_{i}\|.
$$

We turn to the proof of Theorem 4. There exists a transformation $S: l_n^1 \to X$ such that $||S|| = 1$ and $||S^{-1}|| = d(X, l_n)$. Let $\{x_i\}_{i=1}^m \subset X$ be an arbitrary set, put $y_i = S^{-1}x_i$. Let $\{e_j\}_{j=1}^n$ and $\{f_j\}_{j=1}^n$ be the natural bases in l_n^1 and $(l_n^1)^* = l_n^{\infty}$ respectively, and let $y_i = \sum_{j=1}^n a_{i,j} e_j$. Let $\{s_j\}_{j=1}^n$, $\{t_i\}_{i=1}^m$ be any real numbers with absolute values ≤ 1 , and put $y^* = \sum_{i=1}^r s_i f_i$. Then

(16)

$$
\left| \sum_{i,j} a_{i,j} t_i s_j \right| \leq \sum_{i=1}^m |t_i| \left| \sum_{j=1}^n a_{i,j} s_j \right|
$$

$$
\leq \sum_{i=1}^m \left| \sum_{j=1}^n a_{i,j} s_j \right| = \sum_{i=1}^m |y^*(y_i)|
$$

$$
\leq \sup_{\epsilon_i = \pm 1} \left| \sum_{i=1}^m \epsilon_i y_i \right|
$$

$$
\leq \|S^{-1}\| \sup_{\epsilon_i = \pm 1} \left| \sum_{i=1}^m \epsilon_i x_i \right|.
$$

There exists a transformation $T: X \to l_n^2$ such that $||T^{-1}|| = 1$ and $||T||$ $= d(X, I_n^2)$. Then using (15) we obtain

$$
(17) \quad \sum_{i=1}^{m} \|x_{i}\| \leq \sum_{i=1}^{m} \|Tx_{i}\| = \sum_{i=1}^{m} \|TSy_{i}\| = \sum_{i=1}^{m} \|\sum_{j=1}^{n} a_{i,j}TSe_{j}\|
$$
\n
$$
\leq K_{G} \|S^{-1}\| \sup_{\epsilon_{i}=\pm 1} \|\sum_{i=1}^{m} \epsilon_{i}x_{i}\| \|T\| \|S\|
$$
\n
$$
\leq 2K_{G}d(X, l_{n}^{1})d(X, l_{n}^{2}) \sup_{J} \|\sum_{i=1}^{m} x_{i}\|,
$$

where J denotes a subset of $\{1, 2, \dots, m\}$, and this proves inequality (13).

COROLLARY 1. *For* $1 \leq p \leq 2$,

$$
(1+\sqrt{2})\sqrt{n}\geq \lambda(l_n^p)\geq 2n\mu(l_n^p)\geq \sqrt{n}/K_G.
$$

Proof. The upper bound is Result (iv). For the lower bound, take $X = l_n^p$ in Theorem 4 and use Result (i) and Theorem 2.

Vol. 6, 1968 ON THE PROJECTION AND MACPHAIL CONSTANTS OF l_n^p SPACES 301

Corollary 1 proves Theorem 1. It follows also that (13) is asymptotically exact for every $l_n^p (1 \leq p \leq \infty)$.

COROLLARY 2. Let X be an n-dimensional subspace of l^1 , then

 $\lambda(X) \geq K_G^{-1/2} n^{1/4}$.

Proof. Let $T: X \to l_n^2$ be a transformation for which $||T|| ||T^{-1}|| = d(X, l_n^2)$ and let P be a projection of l^1 on X. Now, $TP: l^1 \rightarrow l_n^2$, and as in the proof of Theorem 4, we have for any subset ${x_i}_{i,j=1}^m \subset l^1$

(18)
$$
\|\sum_{i=1}^{m} TPx_i\| \leq K_G \|TP\| \sup_{\epsilon_i = \pm 1} \|\sum_{i=1}^{m} \epsilon_i x_i\|
$$

(this is essentially a result of Theorem 4.1, [7]). Taking in particular $x_i \in X$ in (I8), we get

$$
\|\sum_{i=1}^{m} x_{i}\| \leq \sum_{i=1}^{m} \|T^{-1}\| \|Tx_{i}\| \leq K_{G}d(X, l_{n}^{2}) \|P\| \sup_{e_{i}=\pm 1} \|\sum_{i=1}^{m} \varepsilon_{i}x_{i}\|
$$

$$
\leq 2K_{G}d(X, l_{n}^{2}) \|P\| \sup_{J} \|\sum_{i \in J} x_{i}\|,
$$

where J ranges over the subsets of $\{1, 2, \dots, m\}$. By the definition of $\mu(X)$

(19)
$$
\mu(X) \| P \| d(X, l_n^2) \geq 1/2K_G.
$$

Consequently

(20) $\mu(X)\lambda(X)d(X,l_n^2) \geq 1/2K_c$.

Applying (2) and the inequality $d(X, l_n^2) \leq \sqrt{n}$ [6] in (20), we obtain the required result.

COROLLARY 3. *Let X be an n-dimensional Banach space, then*

$$
\lambda(X)\lambda(X^*) \geq K_G^{-2/3}n^{1/3}.
$$

Proof. Due to the continuity of $\lambda(X)$, we may assume, as in the proof of Theorem 2, that X is a subspace of a suitable l_m^{∞} . Let P: $l_m^{\infty} \rightarrow X$ be a projection such that $\lambda(X) = ||P||$, and let $I: X \to l_m^{\infty}$ be the identity on X. Then P^*I^* is a projection of $(l_m^{\infty})^* = l_m^1$ onto P^*X^* , and it follows from (19) that

(22)
$$
\mu(P^*X^*) \| P^*I^* \| d(P^*X^*, l_n^2) \geq 1/2K_G.
$$

But by Theorem 3(i),

$$
\mu(P^*X^*) \leq \mu(X^*)d(P^*X^*, X^*) \leq \mu(X^*)\left\|P\right\| \leq \lambda(X^*)\lambda(X)/2n,
$$

and since $d(P^*X^*, l_n^2) \leq \sqrt{n}$ and $||P^*I^*|| \leq ||P|| = \lambda(X)$, we obtain from (22): $\lambda(X^*)(\lambda(X))^2 \geq \sqrt{n} / K_{\alpha}$.

302 YEHORAM GORDON

Similarly, $\lambda(X)(\lambda(X^*))^2 \ge \sqrt{n}/K_G$, and (21) follows by multiplying both **inequalities.**

REMARK. An upper bound for $\lambda(X)\lambda(X^*)$ may be found in [5], where it was shown that $d(X, l_n^{\infty})d(X, l_n^1) \leq n$ if X is a real *n*-dimensional symmetric Banach **space. The corresponding inequality for a non-symmetric space involves the** asymmetry constants of the space. Since $\lambda(X) \leq d(X, l_n^{\infty}) = d(X^*, l_n^{\perp})$ if X is **n-dimensional, it follows that if X is symmetric as well, then**

$$
\lambda(X)\lambda(X^*) \leq d(X, l_n^{\infty})d(X, l_n^{\perp}) \leq n.
$$

REFERENCES

1. N. Dunford, and J. T. Schwartz, *Linear operators* Part I, Interscience, New York (1958).

2. A. Dvoretzky, *Some results on convex bodies and Banach spaces,* Proc. International Symp. on Linear spaces, Jerusalem (1961), 123-160.

3. B. Grtinbaum, *Projection constants,* Trans. Amer. Math. Soc. 95 (1960), 451-465.

4. V.E. Gurari, M.E. Kadec and V.E. Mazaev, *On the distance between isomorphic Lp spaces of finite dimension* (Russian), Matematiceskii Sbornik, 70 (112): 4 (1966), 481-489.

5. --, On the dependence of certain properties of Minkowsky spaces on asymmetry (Russian), Matematiceskii Sbornik 71 (113): 1 (1966), 24-29.

6. F. John, *Extremum problems with inequalities as subsidiary conditions,* Courant Anniversary Volume, Interscience, New York (1948), 187-204.

7. J. Lindenstrauss, and A. Pelczyński, *Absolutely summing operators in* \mathscr{L}_p *spaces and their applications,* Studia Math. 29 (1968), 275-326.

8. D. Rutovitz, *Some parameters associated with finite dimensional Banach spaces,* J. London Math. Soc. 40 (1965), 241-255.

THE HEBREW UNIVERSITY OF JERUSALEM